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ABSTRACT

Approximations to flow-dependent analysis-error covariance singular vectors (AEC SVs) were

calculated in a dry, T31 L15 primitive-equation global model. Sets of 400-member ensembles

of analyses were generated by an ensemble-based data assimilation system. A sparse network of

simulated rawinsonde observations were assimilated, and a perfect model was assumed. Ensem-

bles of 48-h forecasts were also generated from these analyses. The structure of evolved singu-

lar vectors was determined by finding the linear combination of the forecast ensemble members

that resulted in the largest forecast-error variance, here measured in a total-energy norm north of

20o N latitude. The same linear combination of analyses specifies the initial-time structure that

should evolve to the forecast singular vector under assumptions of linearity of error growth.

The structure of these AEC SVs are important because they represent the analysis-error struc-

tures associated with the largest forecast errors. If singular vectors using other initial norms have

very different structures, this indicates that these structures may be statistically unlikely to occur.

The European Centre for Medium-Range Weather Forecasts currently uses singular vectors us-

ing an initial total-energy norm (“total-energy singular vectors,” or “TE SVs”) to generate per-

turbations to initialize their ensemble forecasts. Approximate TE SVs were also calculated by

drawing an initial random ensemble with perturbations that were white in total energy and ap-

plying the same approach as for AEC SVs. Comparing AEC SVs and approximate TE SVs, the

AEC SVs had maximum amplitude in mid-latitudes near the tropopause, both at the initial and

evolved times. The AEC SVs were synoptic in scale, deep, and did not appear to be geograph-

ically localized nor tilted dramatically upshear. This contrasts with TE SVs, which started off

relatively smaller in scale, were tilted upshear, and had amplitudes typically largest in the lower-

to mid-troposphere.

The difference between AEC SVs and TE SVs suggests that operational ensemble forecasts based
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on TE SVs could be improved by changing the type of singular vector used to generate initial

perturbations. This is particularly true for short-range ensemble forecasts, where the structure of

the forecast ensemble is more closely tied to the analysis ensemble.
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1. INTRODUCTION

Though ensemble forecasting has been operational in the U.S., Europe, and Canada for nearly

a decade now, no clear consensus has yet evolved on the best practical method for generating

initial conditions for these ensemble forecasts. In principle, it is understood from the Liouville

equation (e.g., Ehrendorfer 1994) that the samples should be drawn from the probability distri-

bution of analysis states, regardless of whether they should be drawn randomly or non-randomly.

However, this analysis-error probability distribution can be highly dependent on the dynamics

of the day and the observation network and thus may be difficult to calculate. Analysis errors

may be quite small in the region of, say, an amply observed blocking high but much larger in

the region of a sparsely observed storm track. A computationally efficient method for generating

sets of initial conditions that are fully consistent with flow-dependent analysis-error statistics has

yet to be demonstrated with an operational weather forecast and data assimilation system. As a

consequence, the various operational numerical weather prediction centers have embraced dif-

ferent approaches to generate initial conditions for their ensemble forecasts. The European Cen-

tre for Medium-Range Weather Forecasts (ECMWF) have used “singular vector” perturbations

(Molteni et al. 1996); the National Centers for Environmental Prediction (NCEP) use a “breed-

ing” method (Toth and Kalnay 1993, 1997); and at the Canadian Meteorological Centre (CMC),

a “perturbed observation” statistical interpolation approach is used (Houtekamer et al. 1996).

Understanding the relative merits of each approach has proved difficult since each forecast

center uses a different forecast model, different data assimilation approaches, and even some-

what different sets of observations. Few comparisons have been performed to test the different

perturbation methods with the same analysis system, forecast model, and observations. Houtekamer

and Derome (1995) compared the skill of the mean forecasts from singular vector, bred, and per-

turbed observation ensembles using a T21 L3 quasigeostrophic model. The authors found lit-

tle difference in the skill of ensemble mean forecasts produced by the three methods. Ander-

son (1996, 1997) provided some comparisons of different approaches using the 3-dimensional

Lorenz (1963) model. Hamill et al. (2000) provided a comparison of singular vector, bred, and
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perturbed observation methods in a quasi-geostrophic channel model with O(105) degrees of

freedom under perfect-model assumptions. This comparison suggested that the perturbed obser-

vation method produced the most consistent and skillful ensembles, especially at short forecast

lead times. Early on, there was a spread-skill relationship for the perturbed-observation ensem-

ble that did not exist in the bred and singular vector ensembles.

Since all of the operational methods that are currently utilized are approximations of vari-

ous degrees, some theoretical guidance on what ideally should be used would be helpful. Under

assumptions of linearity of error growth and normality of errors, Ehrendorfer and Tribbia (1997)

demonstrate that forecast-error covariances for a specified lead time can be predicted most effi-

ciently using an ensemble constructed in the subspace of the leading analysis-error covariance

singular vectors (AEC SVs). These are the structures that explain the greatest forecast variance

and whose initial size is consistent with the analysis-error covariance statistics.

Because of the cost and difficulty of generating such AEC SVs, ECMWF has used a sur-

rogate approach. Their ensemble of initial conditions are constructed to lie in a subspace of the

leading initial-time total-energy singular vectors (TE SVs). Perturbations evolved from these

initial-time singular vectors are designed to maximize forecast error variance at 48 h measured

in a total-energy norm, subject to the constraint that the initial size of the perturbation is fixed

and again measured in a total-energy norm. The structure of evolved SVs at 48 h and beyond

is rather similar whatever the choice of the initial norm (Barkmeijer et al. 1998, 1999), so for

medium-range forecasts, TE SVs are probably a reasonable substitute for AEC SVs.

The structure of the initial-time TE SVs has been documented in a wide variety of models,

with similarities more notable than the differences. From the Charney model (Farrell 1989) to

the Eady Model (Mukogawa and Ikeda 1994, Morgan 2001, Badger and Hoskins 2001) to low-

resolution general circulation models (Buizza et al. 1993) to higher resolution models (Buizza

and Palmer 1995, Barkmeijer et al. 1998, 1999, Hoskins et al. 2000, Reynolds et al. 2001), the

optimally growing structure typically is found in the middle troposphere, is subsynoptic in scale,

and is dramatically tilted upshear. Though most share these features, the literature points out a
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few exceptions; for example, Buizza and Palmer (1995) and Reynolds et al. (2001) point out

cases where the initial-time TE SV associated with the subtropical jet was maximized in ampli-

tude near the tropopause.

Unfortunately, it seems possible that the initial-time TE SVs may not resemble the AEC

SVs, and thus the TE SVs may have a relatively small expected projection onto the subspace

defining the analysis-error covariances. For example, while TE SVs have largest amplitude in

the middle troposphere, studies such as Hollingsworth and Lönnberg (1986) have shown that 6-

hour forecast errors (and thus, presumably analysis errors) are largest near the tropopause and

much smaller in the middle troposphere.

Because of such discrepancies, Barkmeijer et al. (1998, 1999) explored an alternative sin-

gular vector calculation, known as “Hessian SVs.” The initial-time Hessian SVs are consistent

with the analysis-error statistics implied by the observational network and the background-error

covariances assumed in the 3-dimensional variational assimilation scheme (3D-Var). These er-

ror statistics are stationary except to the extent that the observation network varies with time. In

their studies, they compared the structure of the initial perturbations and the accuracy of subse-

quent probabilistic forecasts against those from TE SVs. The leading initial-time Hessian SVs

were larger in scale than corresponding initial-time TE SVs, and their amplitude both at the ini-

tial time and optimization time was largest near the tropopause. Hessian SVs typically grew

somewhat slower than TE SVs. The Hessian SVs had smaller initial amplitudes over data-rich

continents and larger amplitudes over the oceans, consistent with the analysis-error statistics.

Though the Hessian SVs had some desirable characteristics, probabilistic forecasts from TE SVs

were found to be slightly more skillful. The exact reasons for this were unclear; Barkmeijer et

al. hypothesized that perhaps the broad and deep correlation functions in the background-error

covariance model used in 3D-Var unrealistically de-emphasized synoptic and subsynoptic scales,

and that with a more realistic error covariance, the Hessian SV structures might more closely re-

semble those from TE SVs. Gelaro et al. (2002) recently performed a study of singular vectors
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using an analysis-error variance (not covariance) norm and found structures that were somewhat

more similar to TE SVs than in the Barkmeijer et al. studies.

To date, no study has documented the structure of flow-dependent AEC SVs. The emer-

gence of ensemble-based data assimilation methods (see, e.g., Evensen 1994, Houtekamer and

Mitchell 1998, 2001, Burgers et al. 1998, Mitchell and Houtekamer 2000, Hamill et al. 2001,

Whitaker and Hamill 2002, Mitchell et al. 2002) provides a vehicle for quantitatively explor-

ing their approximate characteristics. These methods are based on an ensemble of parallel data

assimilation cycles. Background-error covariances used during the data assimilation are mod-

eled from the collection of ensemble forecasts. If care is taken to avoid filter divergence (see

Hamill et al. 2001 and references therein), this ensemble of initial conditions should sample the

distribution of analysis errors. Using this ensemble, one can readily approximate a few leading

AEC SVs. This calculation involves finding the forecast structures that account for the most er-

ror variance in the space spanned by the ensemble. Under the assumption of linear error evolu-

tion, the initial-time AEC SV is computed by applying to the initial ensemble the same linear

combination of ensemble members that produced the forecast structure with the largest variance.

Attractively, this computation can be done without use of the linear tangent and adjoint versions

of the forecast model.

A similar technique can be used to generate the approximate TE SVs. Following Hamill et

al. (2000), we will compute approximate TE SVs using a very large (1600-member) ensemble

of initial conditions comprised of the ensemble mean analysis plus random perturbations consis-

tent with an initial total-energy norm. A singular value decomposition of the resulting forecasts

then determines the forecast structures with the most variance as well as the initial perturbations

that will evolve into those forecast structures.

This paper will focus on a description of the structure of these AEC SVs and a comparison

with TE SVs. Though it is an important question for ensemble forecasting, we will not address

in this paper the question of the relative usefulness of random and singular-vector ensembles; we

hope to address this in our future work.
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The paper is organized as follows. Section 2 provides a brief description of the forecast

model and the ensemble data assimilation methodology. Section 3 describes the methodology

for generating flow-dependent AEC SVs and the approximate TE SVs. The details of our exper-

iment and test methodology are described in Section 4. Section 5 describes the characteristics of

analysis errors, while section 6 provides results and section 7 a discussion and conclusions.

2. ENSEMBLE-BASED DATA ASSIMILATION METHODOLOGY

a. Forecast Model

A T31 L15 dry primitive equation spectral model will be used in the following experiments.

There are no terrain features nor surface variations (however, in subsequent plots we will super-

impose maps of the earth’s coastlines for reference). The model has 47,150 degrees of freedom.

The prognostic variables are vorticity, divergence, temperature, and surface pressure. Except for

a minor modification to the forcing, described below, the model is essentially equivalent to the

model of Held and Suarez (1994).

The experiment is conducted under perfect-model assumptions; that is, the same forecast

model is used both to generate a synthetic true state and the ensemble forecasts. To generate a

time series of the true state, we started with a random perturbation superimposed upon a resting

state. The model was then integrated for 280 days. The first 100 days were discarded, and the

remaining 180 days taken as the time series of the true state used in this experiment. Hereafter,

day 100 is considered the starting point, the day 0 for all further experiments.

As described in Hamill et al. (2002a), our initial experiments with this model using the clas-

sical Held and Suarez (1994) forcing frequently produced low-quality analyses in the tropical

upper troposphere. After much examination, we concluded that the root cause were small-scale

wave motions excited under adiabatic or superadiabatic conditions. We tested the use of lin-

ear vertical diffusion to control this noise, but this was largely ineffective. As noted by Bénard

et al. (2000), nonlinear vertical diffusion schemes are preferable but must be coded very care-

fully to ensure stability. We decided as an alternative to modify the radiative equilibrium state
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to which temperature is relaxed, making it slightly more stable in the tropical upper troposphere.

The classical Held and Suarez equilibrium state is defined by

Teq = max
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where (∆T )y = 60 K, � is the latitude, (∆�)z = 10 K, p0 = 1000 hPa, and � = R=cp = 2=7, and

cp = 1004 J kg�1 K�1. Our modified Held-Suarez forcing is of the form
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The change in the equilibrium state between the two is illustrated in Fig. 1.

b. Ensemble data assimilation methodology

The assimilation scheme used here has been named the ensemble square-root filter, or “En-

SRF.” A complete description of it and the rationale for its use is provided in Whitaker and Hamill

(2002). The underlying principle is to run an ensemble of parallel forecast and data assimilation

cycles, ensuring that the ensemble mean analysis and the analysis-error covariance as estimated

by the ensemble are consistent with that predicted by Kalman-filter theory.

We follow the notational convention of Ide et al. (1997). Let xb be a background model

forecast, yo be a set of observations, H be an operator that converts the model state to the obser-

vation space, here assumed linear. Let Pb be the background-error covariance matrix, and R be

the observational-error covariance matrix. The minimum error variance estimate of the analyzed

state xa is then given by the traditional Kalman filter update equation (Lorenc 1986),

xa = xb + K(yo � Hxb); (3)

where

K = PbHT(HPbHT + R)�1: (4)

The expected analysis-error covariance is

Pa = (I � KH)Pb: (5)
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In the standard ensemble Kalman filter (EnKF; Evensen 1994, Houtekamer and Mitchell 1998,

Burgers et al. 1998, Hamill et al. 2001), parallel data assimilation cycles are conducted, each

cycle updating a member background forecast to a set of perturbed observations perturbed with

noise consistent with observational errors. Pb is approximated using the sample covariance from

an ensemble of model forecasts; Pb = hx0bx0bTi, where primes denote the deviation from the en-

semble mean and h�i denotes the expected value, here computed from the ensemble. In actuality,

there is no need to compute and store the full matrix Pb. Instead, matrices PbHT and HPbHT are

estimated directly using the ensemble (Evensen 1994, Houtekamer and Mitchell 1998).

The EnSRF operates similarly, conducting a set of parallel data assimilation cycles. It is

convenient in the EnSRF to update the equations for the ensemble mean (denoted by an overbar)

and the deviation from the mean separately:

xa = xb + K(yo � Hxb); (6)

x0ai = (I � eKH)x0bi : (7)

Here, K is the traditional Kalman gain given by Eq. (4), and eK is the “reduced” gain used to up-

date deviations from the ensemble mean.

When sequentially processing independent observations, K, eK; HPb and PbHT are all vec-

tors with the same number of elements as the model state vector, and HPbHT and R are scalars.

Thus, as first noted by Potter (1964), when observations are processed one at a time,

eK =

0@1 +

s
R

HPbHT + R

1A�1

K: (8)

The quantity multiplying K in Eq. (8) is thus a scalar between 0 and 1. This means that, in or-

der to obtain the desired analysis-error covariance, one updates deviations from the ensemble

mean using a modified Kalman gain that is reduced in magnitude relative to the traditional Kalman

gain. Thus, deviations from the mean are reduced less in the analysis using eK than they would

be using K. In the EnKF, the excess variance reduction caused by using K to update deviations

from the mean is compensated for by the introduction of noise to the observations. In the En-

SRF, the mean and departures from the mean are updated independently according to Eqs. (6)
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and (7). If observations are processed one at a time, the EnSRF requires about the same compu-

tation as the traditional EnKF with perturbed observations.

The general analysis methodology is thus as follows: generate a set of perturbed initial con-

ditions. Make n forecasts forward to the next data assimilation time. Perform n + 1 parallel data

assimilation cycles, updating the mean state using (6) and (4) and the n perturbations using (7)

and (8). Repeat the process. In each data assimilation cycle, observations are assimilated seri-

ally.

Some additional algorithmic complexity will be used in order to model background-error

covariances more accurately. These include the inflation and localization of covariances. Devi-

ations of perturbations of each member from the ensemble mean are inflated by a small amount

before the start of each data assimilation cycle in order to ensure that covariances are not sys-

tematically underestimated. Such underestimation can cause a problem known as filter diver-

gence, whereby the influence of new observations is ignored. Covariance localization multiplies

the ensemble estimate of covariances with an isotropic function which monotonically decreases

with greater distance from the observation. See Hamill et al. (2001) and references therein for

an in-depth rationale and mathematical formalism.

3. APPROXIMATE SINGULAR VECTORS GENERATED FROM ENSEMBLES

a. Analysis-error covariance singular vectors

Before describing how the leading AEC SVs can be approximated given an ensemble of

analyses from the EnSRF, we first briefly review the definition and some properties of the AEC

SVs. We use the following notational conventions. S denotes a symmetric, nonnegative matrix

defining a norm for the forecast errors by jxj2 = xTSx. In what follows, we will define j � j to

be the total energy norm and write S = DTD, where D is a matrix that transforms and scales the

state vector so that (Dx)TDx is the total energy of x. M = M(t1; t2) will denote the resolvent of

the tangent linear dynamics over the interval [t1; t2] (that is, M maps sufficiently small analysis

error at t = t1 onto forecast errors at t = t2).
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To find the analysis-error covariance singular vectors, we would like to the maximize fore-

cast perturbation x0f , measured in a total-energy norm, subject to the constraint that the initial

perturbations x0a are sized to be consistent with the analysis-error statistics, i.e.,

max
x0f

T
Sx0f

x0aTPa�1x0a

or

max
x0a

T
MTSMx0a

x0aTPa�1x0a
:

The normalization in the denominator ensures that the size and structure of x0a are consistent

with those of a perturbation drawn from a normal distribution with zero mean and covariance

Pa. Thus, when the denominator is large, the error is unlikely. By Rayleigh’s principle, these

AEC SVs are also a solution to the generalized eigenvalue problem

MTSMu = �Pa�1u (9)

where u denotes an eigenvector and � the associated eigenvalue (also see Barkmeijer et al. 1998).

The significance of the solutions u in (9) can be seen by defining v = DMu. Multiplying (9)

on the left by DMPa and recalling that S = DDT then yields

DMPaMTDTv = �v: (10)

The forecast error covariance at the optimization time is Pf =
D

x0fx0f
TE

. If analysis errors evolve

linearly, then Pf = MPaMT and (10) becomes

DPfDTv = �v: (11)

Thus, the solutions v of (10) are the eigenvectors of the forecast-error covariance matrix (after

transforming and scaling the state with D), and u in (9) is the initial error that evolves to pro-

duce v, via v = DMu. We will refer to u as the initial-time AEC SV, since it corresponds to

an error in the analysis, and to v as the evolved or forecast AEC SV, since it corresponds to the

forecast error produced by the analysis error u.
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Now, we wish to approximate the leading AEC SVs using an ensemble of analyses at t = t1

from the EnSRF and an ensemble of forecasts to t = t2 from those analyses. Let Xa = (n �

1)�1=2[xa
1 � xa; : : : ; xa

n � xa], where the ith column vector represents the ith member xa
i’s an-

alyzed model state deviation from the ensemble mean analysis xa. Similarly, let Xf = (n �

1)�1=2[xf
1 � xf; : : : ; xf

n � xf], where xf
i is the forecast from xa

i based on the full (nonlinear) fore-

cast model. In order to approximate the AEC SVs, the ensemble to be used must satisfy

lim
n!1

XaXa
T = Pa and lim

n!1
XfXf

T = Pf ; (12)

that is, the sample covariance matrices based on the analysis and forecast ensembles must ap-

proximate Pa and Pf , respectively, for sufficiently large ensembles.

The forecast AEC SVs can be approximated by the solutions of

DXf (DXf )Tv = �v; (13)

This is because, given the second condition in (12), eqns (11) and (13) become identical for large

n. We compute solutions of (13) by representing v as a linear combination of the n forecast de-

viations, that is,

v = DXfa: (14)

Substituting for v in (13) and eliminating a factor of DXf from each side, we obtain an equiva-

lent (for � 6= 0) but smaller n� n eigenproblem,

(DXf )TDXfa = XT
fSXfa = �a; (15)

whose solutions can be found by conventional numerical techniques. Alternatively, one may

compute v as the left singular vectors in an SVD of DXf . We have found negligible differences

in the resulting numerical solutions.

To approximate the initial-time AEC SVs, we need a similar approximation to the solutions

u of (9). This requires the assumption that the forecast-error evolution is approximately linear;

in that case, Xf = MXa and (15) becomes

XT
aMTSMXaa = �a: (16)
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Multiplying by Xa and setting u = Xaa then gives, for large n,

PaMTSMXaa = PaMTSMu = �u; (17)

which is identical to (9). Note that the leading eigenvectors a of (15) provide both an approx-

imate initial AEC SV, through u = Xaa, and an approximate evolved AEC SV, through v =

DXfa, which is exactly (14).

Hence, our overall algorithm for computing the singular vectors from a large ensemble is as

follows: (15) is first solved to yield the appropriate linear combination a. The initial-time singu-

lar vectors are then readily computed as u = Xaa, and the approximate evolved AEC SVs from

v = DXfa. These singular vectors are approximations to the true singular vectors that can only

be obtained if the error dynamics are truly linear and if the ensemble size is infinite. In section

6 we will provide some evidence that linear dynamics can appropriately be assumed and that the

singular vector structure from ensembles larger than the n = 400 used here should not change

much.

b. Total-energy singular vectors

The technique for generating approximate TE SVs is very similar to that used to generate

AEC SVs, differing only in the method of constructing the initial ensemble. For AEC SVs, the

initial ensemble represented random samples of analysis error; for TE SVs, the initial ensemble

consists of the mean analysis state plus very small random perturbations that are designed to be

white in a total-energy norm. See also Hamill et al. (2000) for a similar computation in a quasi-

geostrophic model.

Let (u; v;T;Ps)T denote a vector of wind, temperature and surface pressure perturbations to

the mean analysis state. We would like to generate perturbations that are white in total energy

(have equal energy in all resolved scales) and that have a small fraction of the energy of the ba-

sic state so that perturbations will evolve linearly. Following the Ehrendorfer and Errico (1995),
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the total energy of the perturbation is defined as

k � k =

r
1
2

R
E

R 1
0

h
u2 + v2 + cp

Tr

T 2 + RdTr
�
ps
pr

�2i
d� dER

E

R 1
0 d� dE

; (18)

where E indicates the horizontal domain, � is the vertical coordinate, Tr is a reference temper-

ature (here, 300 K), Rd is the gas constant for dry air (287 J K�1 kg�1), and cp is the specific

heat of dry air at constant pressure (1004 J K�1 kg�1), ps is the surface pressure, and pr is a

reference pressure (1000 hPa).

Suppose we want to generate a random perturbation that is white in total energy. Our model

is spectral, with a state vector consisting of vorticity, divergence, temperature, and surface pres-

sure. Accordingly, let Vmnl, Dmnl, Tmnl, and Pmn be perturbations to the vorticity, divergence,

temperature, and pressure, respectively. Here, m indicates the zonal wavenumber (0-31), n the

degree of the spherical harmonic, and l the model level. Similar to Boer and Shepherd (1983),

the total energy for our T31L15 model can be expressed as

k � k = Kte =
1
2

31X
m=�31

31X
n=jmj

" 15X
l=1

�
�n VmnlV

�
mnl + �n DmnlD

�
mnl

+ � TmnlT
�
mnl

�
+ PmnP

�
mn

#
:

(19)

where � denotes the complex conjugate, and coefficients �n, �, and  are defined as

�n =
r2
e

n(n + 1)
;

� =
cp
Tr

;

and

 =
Rd Tr
p2
r

;

where re is the radius of the earth. To generate spectral perturbations that are small and white in

total energy, we do as follows: (1) For each spectral component at each model level, generate in-

dependent random normal deviates for the real and imaginary components of vmnl, dmnl, tmnl,
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and pmn. (2) Scale the random normal deviates to generate perturbations to the state component.

Let

Vmnl = k1 �
�1=2
n vmnl;

Dmnl = k1 k2 �
�1=2
n dmnl;

Tmnl = k1 �
�1=2 tmnl;

and

Pmn = k1 
�1=2 pmn:

Here, k1 is a constant chosen so that the typical magnitude of the perturbation sums to Kte, and

k2 is a ratio of the magnitude of divergence to vorticity perturbation size (here k2 = 0:2; note

that this decreases the divergent component of the wind but because temperature and vorticity

perturbations are generated independently, the initial perturbations are still largely unbalanced).

The overall methodology for calculating TE SVs at a particular time is as follows: first, cal-

culate the ensemble mean of the ENSRF analyses. Next, generate an ensemble of perturbations

that are white in total energy as described above. Add the perturbations to the mean analysis

state, forming the ensemble of perturbed initial conditions. Integrate this ensemble forward 48

h using the fully nonlinear model. The methodology then follows that for the AEC SVs: the lin-

ear combination of ensemble forecasts is found that results in the largest variance in total en-

ergy, and that same linear combination is applied to the initial ensemble to determine the leading

initial-time TE SV.

Because the perturbations have a flat energy spectrum, a much larger ensemble of perturba-

tions is needed to generate TE SV perturbations that grow rapidly. Even with a large ensemble,

the initial structures are still much noisier than they are for the AEC SVs. See section 6.a for de-

tails.

4. EXPERIMENTAL DESIGN

Our experiment was conducted over an 180-day period and used a 400-member EnSRF

data assimilation system as described in section 2b. In this implementation of the EnSRF, co-
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variances were localized using a Schur product of ensemble covariances with an approximately

Gaussian-shaped function with local support (Gaspari and Cohn 1999) reaching a zero value at

7000 km distance from the observation. Before each data assimilation cycle, covariances were

inflated by 0.3 %.

Synthetic rawinsondes (raobs) were assimilated every 12 h. The observations consisted of

a surface pressure measurement and winds and temperatures at 7 of the sigma levels, located

approximately at 900, 766, 633, 500, 366, 233, and 100 hPa. Observations had error charac-

teristics derived from Parrish and Derber (1992); wind errors were assumed to have a standard

deviation of 1.73, 2.18, 2.7, 2.8, 3.2, 3.0, and 2.5 ms�1 respectively at the seven levels, and tem-

perature standard deviations of 1.6, 1.4, 1.3, 1.3, 1.9, 2.5, and 3.1 K. Observation errors were

assumed uncorrelated in the vertical. Observation locations are shown in Fig. 2; they were cho-

sen to provide a crude analog to the operational raob network, with more observations over the

“land” than the “ocean.”

In order to examine the structure of AEC SVs, we periodically made an ensemble of 400

48-h forecasts from the 400 analyses. The first of these forecasts were conducted from the anal-

yses on day 17.5, and another sample was generated every 5 days thereafter, yielding a total of

33 cases. The AEC SVs were computed using Northern Hemisphere ensemble forecast data

north of 20Æ N, and the set of evolved singular vectors was constructed to be orthogonal in the

total-energy norm using the methodology outlined in section 3. The evolved singular values and

singular vectors were ordered from largest to smallest. To determine the associated initial-time

structure, the linear combination of ensemble forecast members that produced a given evolved

singular vector is used, but applied to the initial-time ensemble. Under linearity assumptions,

this should produce the correct initial-time structure. The extent to which this assumption is

valid will be examined in the section 6.

The method for generating approximate TE SVs was similar. A 1600-member ensemble

of small initial perturbations that were white in energy were constructed and added to the mean

analysis, followed by 1600 48-h forecasts.
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5. ANALYSIS ERROR CHARACTERISTICS

Before examining the structure of the AEC SVs and TE SVs, we first document the charac-

teristics of analysis errors, which are crucial in determining that structure. A time series of the

domain-average ensemble mean analysis error is shown in Fig. 3. Errors decreased quickly to a

very low value, punctuated by occasional spikes of somewhat higher error. Figure 4 a-b shows

a zonal-mean cross section of the Northern Hemisphere ensemble mean analysis error. Wind

errors were largest at the tropopause, with distinct maxima at three locations, near the equa-

tor, in the subtropical jet core, and near the North Pole. The former was primarily due to small-

scale wave motions generated when the atmosphere is adiabatic or superadiabatic; this maxi-

mum would have been substantially larger without the use of the modified Held-Suarez forc-

ing discussed in section 2a. The maximum in the midlatitudes was due to rapid error growth

associated with the subtropical jet, and the maximum at the pole was due to a lack of obser-

vations. Temperature errors had a less complex structure, with a tropospheric maximum near

the pole and a minimum in the tropical lower troposphere. Though we will focus on the North-

ern Hemisphere hereafter, where errors were very small, we note that the errors were gener-

ally much larger in the Southern Hemisphere, where the observational network was more sparse

(Fig. 5).

A desirable property of an ensemble data assimilation system is that one should be able to

consider the analyses and the true state as random samples from the same probability distribu-

tion. This can be evaluated with rank histograms (Hamill 2001 and references therein). Figure

6 shows selected rank histograms for several analysis variables. With the exception of temper-

atures in the tropical upper troposphere, the predominant characteristic of the analyses was a

slight excess of spread in the ensembles, manifested in a convex shape to the histograms. The

apparent bias of tropical upper-tropospheric temperatures was initially a major concern, sug-

gesting a problem such as filter divergence. However, as shown in Fig. 4, the ensemble mean

temperature analysis error in the tropics was exceedingly small. A map of zonally and tempo-

rally averaged temperature bias is presented in Fig. 7. The bias was also uniformly small; at 300
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hPa in the tropics, the bias was � 0.10 K. Since the analysis error of temperatures were typi-

cally about 0.2 K or less in the tropics (Fig. 4), this tiny bias had a large effect on the rank his-

tograms. Since our concern will be primarily in the Northern Hemisphere midlatitudes where

rank histograms were generally more uniform, we conclude that the ensemble should generally

be useful for providing random samples of analysis error.

These results are broadly consistent with those of results of Mitchell et al. (2002), who con-

ducted experiments in a similar model with a similar data assimilation scheme.

6. RESULTS

a. Characteristics of singular vectors

We first consider the growth rate of the ordered AEC SVs, shown in Fig. 8a. Averaged over

many cases, the energy of the leading singular vector grew by a factor of slightly less that 4 dur-

ing the 48-h forecast. Since energy is a squared quantity, this implies that perturbations approxi-

mately doubled in size during the 48 h. Though this growth rate may seem small, the error dou-

bling time for this model at this resolution is around 4 days (higher-resolution versions of this

model have faster, more realistic error doubling times). Thus, the leading singular vector grew

approximately twice as fast as the leading Lyapunov vector (Legras and Vautard 1996).

In this analysis, the singular vectors were ordered by the amount of forecast error variance

that they explain. This does not imply that the leading AEC SV was necessarily associated with

the fastest growing structure. The largest forecast error could have been due to rapid error growth,

but it may also have been due to the initial analysis structure having relatively large errors in that

direction in phase space. Such a contingency is illustrated by Fig. 8b, showing the growth rates

for an individual case (day 132.5). Here, singular vector 3 grew faster than both singular vectors

1 and 2.

TE SVs grew faster on average than AEC SVs, and there were more growing directions

(Fig. 8c). This is broadly consistent with the results of Barkmeijer et al. (1998, 1999), who

found that their TE SVs grew much faster than the Hessian SVs. Note that it is quite likely that
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with a larger ensemble, yet faster growth of the TE SVs would be possible. When the amplifi-

cation of the leading singular vector was calculated from a 100-member ensemble, this was ap-

proximately 1.7; for a 400-member ensemble, approximately 4.3, and as shown for the 1600-

member ensemble, approximately 8.5. Still, the 1600 members were enough to verify that the

features of these TE SVs were consistent with those observed in prior studies, as will be docu-

mented below.

Consider the average vertical structure of the leading singular vector. Figure 9 a-b illus-

trates the zonal-mean structure of the leading AEC SV for the initial time and evolved (48 h).

Amplitudes at both times were maximized in middle latitudes near the tropopause, with a sec-

ondary maxima near the poles, where the analysis errors were consistently large due to lack of

data. There was also a secondary maxima in middle latitudes near the surface. The structure

was qualitatively unlike that of TE SVs, shown in Figs. 9 c-d. Consistent with previous stud-

ies (e.g., Buizza and Palmer 1995), the TE SVs started with a maximum initial amplitude in the

middle troposphere. The initial structure of these TE SVs was not as well-defined in this model

as it is for experiments where the singular vectors were calculated using the linear tangent and

adjoint; the leading singular vector contains both the relevant growing dynamical structure (e.g.,

Figs. 10-11) and spurious noise (hence the red color throughout the plot in Fig. 9c).

The growth of various components of the AEC SVs were also examined. In terms of indi-

vidual wind components (not shown), the AEC SVs at both initial and evolved times were dom-

inated by the meridional wind component, with much less amplitude in the zonal wind and tem-

perature components. Temperature perturbations were found to grow primarily near the lower

boundary, with less growth aloft. The initial-time TE SV temperature perturbations were much

larger than the wind perturbations, were tilted upshear, and were maximized in the lower- to

middle troposphere (Fig. 10a), consistent with prior TE SV studies. Evolved TE SVs had larger

amplitude perturbations in wind than in temperature, were deeper (Fig. 10b) and larger in scale

(Fig. 11), again consistent with prior studies such as Barkmeijer et al. (1999).
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The typical horizontal structure was also unlike the structure of TE SVs. The power spec-

trum of the leading singular vector (Fig. 12) shows that power was peaked around wavenumber

8 for both the initial-time and the evolved AEC SVs. The growth rate of the perturbations was

roughly similar at all scales up to wavenumber 25. This, again, was dramatically different than

the TE SVs (Fig. 12 again), which initially have a larger fraction of their power at smaller scales

but evolve to have a majority of the power at larger scales. This is consistent again with Buizza

and Palmer (1995) and Barkmeijer et al. 1999 (their Fig. 1).

Figures 13 a-b shows one case day’s AEC SV structure at 300 hPa at the initial and evolved

times. The AEC SVs were synoptic in scale and had significant projections at most longitudes.

TE SVs in our model (e.g., Fig. 11) and those documented in prior studies were much more lo-

calized. Our first thought was that the non-locality of the AEC SVs might have been a result of

the insufficient ensemble size; perhaps 400 members was not enough to converge to a correct,

more localized structure. However, visual comparisons of the leading AEC SV from 25- and

100-member ensembles suggest that the global nature of the singular vector does not appear to

decrease with increasing sample size (Fig. 14). Perhaps the global structure could be an artifact

of the simplicity of the forecast model, which does not have land/water interfaces or terrain fea-

tures to regionalize areas of preferred cyclogenesis.

The evidence provided here suggests that the structure of flow-dependent AEC SVs is markedly

different than that of TE SVs. Does this make AEC SVs a better basis for ensemble forecast-

ing applications? Perhaps so, at least for shorter-range ensemble forecasts. Figure 15 provides a

comparison of the projection of the error of the 48-h ensemble mean forecast onto the subspace

of the leading 48-h forecast TE and AEC SVs for each of the 33 cases. As shown, the projection

into the subspace of the AEC SVs is typically larger than into the subspace of TE SVs, suggest-

ing that they are a more appropriate basis. A suggestion of why this may be so can be seen from

a re-examination of Figs. 9b and 9d. The structure of the leading forecast AEC SV has signif-

icant amplitude near the poles, while this is missing in the leading TE SV. Recall that a large

forecast error can result from either rapid growth of initially small errors or the persistence of
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large errors from the analysis. Error structures caused by this latter effect are naturally captured

by AEC SVs and missed by TE SVs. Presumably, the more spatially homogeneous and spec-

trally white the initial errors, the greater the similarity of forecast AEC SVs and TE SV struc-

tures.

b. Sampling and linearity issues.

We have not yet examined some of the underlying assumptions for creating these AEC SVs.

There were several possible sources for error in the computation of these AEC SVs. First, though

the ensemble size was large, perhaps the singular vector structure would have been significantly

different if the ensemble size were infinite. Second, we assume that errors grew linearly during

the forecast. We would like to examine the validity of each of these assumptions.

On each of the case days, we have examined the structure of the leading AEC SV for en-

sembles of size 25, 100, and 400. It was clear that the structure of individual singular vectors

was not fully converged with 400 members. However, of greater consequence for ensemble fore-

casting is the question of whether the leading singular vectors of small and larger ensembles

span the same subspace. If they do, that subspace is converged, and adding additional ensem-

ble members is not required. This aspect can be examined here by calculating how strongly the

singular vectors of 25- or 100-member ensemble project onto the subspace of the leading SVs

of the full 400-member ensemble, as done in Fig. 16. Such calculations were also demonstrated

in Buizza (1994) and Hamill et al. (2000). The leading 25 initial-time singular vectors from the

ensembles of size 25 and 100 projected moderately onto the subspace of the leading 25 singular

vectors from the 400-member ensemble (Fig. 16a). The projection was much stronger for the

evolved singular vectors (Fig. 16b), where for the first 10 singular vectors of the 100-member

ensemble, the projection was greater than 95 percent. This suggests that there was noisiness in

the initial time AEC SVs that was somewhat irrelevant to the evolved structure, given a long-

enough optimization time. This also indicates that a larger ensemble is required to represent

analysis errors than to represent forecast errors (see also Hamill et al. 2002b). Barkmeijer et al.

(1998, 1999) and others have previously noted that the evolved structure of ensembles tends to

22



be very similar even when the initial ensembles are started from quite different structures. This

similarity is a result of the attraction of all perturbations to the lower-dimensional strange attrac-

tor, which occurs on a time scale of 1-3 days (Snyder et al. 2002).

We examined the issue of linearity using the methodology outlined in Gilmour et al. (2001).

They denote a nonlinearity index Θ as

Θ =
kÆ+(t) + Æ�(t)k

0:5 f kÆ+(t)k + kÆ�(t)k g
: (16)

k � k here denotes a total energy norm north of 20Æ N, Æ+(t) denotes a positive perturbation, and

Æ�(t) is a negative perturbation. When growth is linear, Θ = 0. To calculate Θ here, forecasts

were integrated to 48 h from two perturbed initial conditions about the ensemble mean, one in

the direction of the leading singular vector, the other its negative pair. Averaged over the 33

cases, Θ was very small, typically � 0:02. Of course, as noted above, for a given model Θ will

depend upon the size of the perturbation and the length of the forecast. Here, the nonlinearity

was small both because the initial perturbations were very small and the time scale of the fore-

cast was relatively short compared to the error-doubling time. These results are thus not gen-

eralizable to different forecast models with faster error growth rates and larger initial condition

errors.

7. DISCUSSION AND CONCLUSIONS

We have examined the structure of flow-dependent analysis-error covariance singular vec-

tors (AEC SVs) from a simple general circulation model using an ensemble-based data assimi-

lation system. This was done in order to understand the characteristics of singular vectors when

their initial structure was constrained to be consistent with analysis error statistics. Further, this

study demonstrates that the AEC SVs may be fundamentally different in structure than singular

vectors using a total-energy initial norm. The structure of these singular vectors has important

implications for how to generate dynamically constrained perturbations for ensemble forecasts.

In our experiments, a T31 L15 dry general circulation model (GCM) was used under perfect-

model assumptions. Sets of 400-member ensembles of analyses were generated by an ensemble
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square-root filter data assimilation system assimilating a sparse network of synthetic radiosonde

observations. Ensembles of 48-h forecasts were also generated from these analyses. The evolved

singular vectors were determined by finding the linear combination of the forecast ensemble

members that resulted in the largest forecast-error variance, here measured as a total-energy norm

north of 20Æ N latitude. The same linear combination of analyses specified the initial-time struc-

ture that should evolve to the forecast singular vector under assumptions of linearity of error

growth. A similar procedure was used to generate approximate total-energy singular vectors (TE

SVs).

In this simplified GCM, the typical structure of initial-time TE SVs was significantly dif-

ferent than the structure of corresponding AEC SVs. The AEC SVs had maximum amplitude in

mid-latitudes near the tropopause, both at the initial and evolved times; the initial structure was

very similar to the subsequent forecast error structure but smaller in magnitude. The AEC SVs

were synoptic in scale and did not appear to be geographically localized. This contrasts with TE

SVs, which started off much smaller in scale and had amplitudes that were typically largest in

the lower- to middle troposphere. The TE SVs grew very rapidly and changed in structure dur-

ing the forecast, so that their evolved structure was rather similar to that of the evolved AEC

SVs.

The structure of the AEC SVs shown here is generally consistent with the structure of Hes-

sian singular vectors (HSVs) of Barkmeijer et al. (1998, 1999). For the HSVs, the initial norm

is based on the Hessian of the cost function in a 3D-Var assimilation scheme; that Hessian ma-

trix, in turn, is equal to the inverse of the analysis-error covariances that would be obtained if the

background forecast error covariances assumed in 3D-Var were correct. Although the background-

error covariances used in the HSVs are not flow dependent, the estimate of the analysis-error co-

variances provided by the Hessian is based on reasonable time-averaged estimates of the background-

error covariances and a detailed accounting of the locations and accuracies of the available ob-

servations. Agreement of AEC SVs here with HSVs of Barkmeijer et al. further supports the

relevance of our results to more complex and realistic NWP systems.
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The structure of the AEC SVs is also consistent with estimates of analysis-error statistics in

a quasigeostrophic model (Hamill et al. 2002b). In that model, the analysis errors share many of

the characteristics of the AEC SVs calculated here: they are largest in the upper troposphere and

are smallest in the lower- to middle troposphere, they are synoptic in scale, and they are deep

structures with weak vertical tilts. These properties of the analysis error in the quasigeostrophic

model arise because of the rapid dynamical conditioning of errors during the forecast (Snyder et

al. 2003) and because the analysis errors keep much of the character of the background errors,

despite the effects of the assimilation process (Hamill et al. 2002b).

Perhaps with a more complex model than used in this experiment or with a change in ex-

perimental design (for example, use of imperfect forecast models with moist thermodynamics)

these inconsistencies of AEC SV and TE SV structures might change somewhat; this experiment

used a low-resolution GCM under perfect-model assumptions. Nonetheless, there is clearly other

evidence to support the relevance of our results. Conversely, there is little research to support

the assertion that the structure of initial-time TE SVs are similar to those of AEC SVs.

What are the operational implications of this research? To the extent that analysis errors

in our simplified model resemble those in global numerical weather prediction models, the dif-

ference in structure between these AEC SVs and ECMWF’s TE SVs suggest that their opera-

tional ensemble forecasts could be improved from the change, were this computation practical.

The choice of initial norm is likely to be especially important for short-range ensemble forecasts

(SREFs). Because TE SVs grow more rapidly than AEC SVs, their initial amplitudes are typ-

ically set below the magnitude of analysis error; this way, after their rapid initial growth they

have a realistic magnitude (Molteni et al. 1996). Further, their initial amplitudes are likely to be

especially small near the surface and the tropopause, where the initial TE SV amplitude is typi-

cally small anyway. Consequently, SREFs from TE SV initial conditions can be expected to be

unreliable at short lead times, having too little spread.

The calculation of AEC SVs in this study was facilitated by the existence of an ensemble-

based data assimilation system. None of the major operational weather prediction facilities yet
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have such a data assimilation system in place, and the relative accuracy of ensemble data as-

similation systems relative to 4D-Var is still unknown. Yet there are reasons for the operational

centers to give serious consideration to these techniques. In this paper, we showed that analy-

sis errors can be reduced to a remarkably low level with relatively few observations, albeit in a

perfect-model simulation with a simple model. The key to this reduction was the flow-dependent

background-error covariances generated by the ensemble filter, which produced a more optimal

weighting of the background relative to the observations. The dramatically low errors demon-

strated here do not seem to be unusual, either: a growing body of contemporaneous literature

has also demonstrated the appeal of ensemble filters for atmospheric, oceanic, and land-surface

assimilation problems (Evensen 1994, Evensen and van Leeuwen 1996, Burgers et al. 1998,

Houtekamer and Mitchell 1998, 2001, van Leeuwen 1999, Lermusiaux and Robinson 1999, An-

derson and Anderson 1999, Hamill and Snyder 2000, Keppenne 2000, Mitchell and Houtekamer

2000, Heemink et al. 2001, Hamill et al. 2001, Anderson 2001, Pham 2001, Whitaker and Hamill

2002, Reichle et al. 2002, Mitchell et al. 2002).

The appeal of ensemble filters may be greater yet if one considers the improvements they

may foster for ancillary applications. Ensemble filters readily generate sets of initial conditions

for ensemble forecasts that are automatically consistent with flow-dependent analysis-error statis-

tics. They may facilitate more accurate computation of where adaptive observations are needed

(Hamill and Snyder 2002), for parameter estimation (e.g., Anderson 2001), and for computation

of AEC SVs, as demonstrated here.

An issue we have not addressed in this study is the relative value of ensemble forecasts ini-

tialized with random perturbations vs. perturbations in the subspace of the singular-vectors. The

framework outlined in this paper provides a natural way of performing such tests, and we hope

to address this in our future work.
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FIGURE CAPTIONS

Figure 1. (a) Classical Held and Suarez potential temperature profile; (b) Modified Held and

Suarez potential temperature profile (with more stable tropical troposphere) used here. Tem-

perature in Kelvins. Contours are not plotted above 410 K.

Figure 2. Locations of synthetic rawinsonde profiles.

Figure 3. Time series of errors of ensemble mean analysis from ensemble square root filter. Er-

rors are expressed in a total-energy norm integrated over the domain.

Figure 4. Time- and zonally averaged ensemble mean absolute analysis error taken from sam-

ples between days 35 and 180. (a) Wind error, and (b) temperature error.

Figure 5. Map of time-averaged ensemble mean error in energy norm at 500 hPa. Locations of

raobs are overplotted.

Figure 6. Rank histograms of analysis errors. Rank histograms were generated using a sub-

sample of 25 of the 400 ensemble members. Northern Hemisphere rank histograms used

samples at every grid point between 30Æ and 65Æ N latitude and every 15Æ longitude. Trop-

ical rank histograms used samples between 15Æ N and 15Æ S latitude, and Southern Hemi-

sphere samples between 30Æ and 65Æ S latitude.

Figure 7. Zonal average of bias of the ensemble mean analysis. Average was taken from days

35 to 180.

Figure 8. (a) Growth rate (in total energy) over 48-h optimization period of AEC SVs as a func-

tion of singular vector number. Solid line denotes average over 33 cases, dashed lines the

minimum and maximum from the 33 cases. (b) Example of an individual case where growth

rates of AEC SV do not monotonically decrease with increasing singular vector number. (c)

As in (a), but for TE SVs.

Figure 9. Zonal-mean profile of energy of the leading AEC SV averaged over the 33 cases. (a)

initial time, (b) 48-h evolved. Units are m2s�2. (c)-(d) As in (a)-(b), but for 48-h evolved

32



TE SV. Amplitudes are non-dimensional energy; here (c) is chosen to be normalized by the

maximum initial-time amplitude and (d) by the maximum final-time amplitude.

Figure 10. Cross section of the temperature perturbation structure of the leading TE SV initial-

ized on day 32.5. Cross-section is along �42.5 o N latitude. Perturbations are normalized

by the magnitude of the largest forecast perturbation. Red perturbations are positive, blue

are negative. (a) Initial-time TE SV temperature perturbation, (b) 48-h evolved.

Figure 11. Leading TE SV perturbations (colors) initialized on day 32.5. (a) Initial-time 700

hPa temperature (solid lines, contours every 5 K) and perturbations (normalized by the mag-

nitude of the largest evolved perturbation). (b) 48-h 700 hPa temperature and evolved per-

turbations (same normalization). (c) 48-h 300 hPa streamfunction and evolved perturbations

(normalized by the magnitude of the largest evolved streamfunction perturbation). Red per-

turbations are positive, blue are negative.

Figure 12. Time- and latitudinally averaged power spectrum of zonal component of total energy

for the leading singular vectors. Average is over 33 cases and latitudes from 35Æ to 55Æ N

latitude. (a) Power spectrum at 300 hPa. (b) Power spectrum at 900 hPa.

Figure 13. 300 hPa AEC SV structure for (a) initial time (here, day 32.5) and (b) 48-h evolved

(here, day 34.5). Heavy solid lines denote streamfunction of true state at that time, and col-

ored lines denote the perturbation to streamfunction from the first singular vector. Contours

of true streamfunction are every 2.�107m2s�1. Streamfunction perturbations in both panels

are normalized by the largest perturbation from the forecast, with contours at [-0.9, -0.7, : : :

, 0.7, 0.9]. Red perturbations are positive, blue perturbations negative.

Figure 14. (a) As in Fig. 10b, but from a 100-member ensemble. (b) As in Fig. 10b, but from a

25-member ensemble.

Figure 15. Comparison of the projection of 48-h forecast error onto subspace of leading AEC

SVs and TE SVs. Each dot denotes an individual forecast case (33 total). Squares denote
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the projection onto subspace of leading 25 singular vectors, filled circles onto the leading 10

singular vectors.

Figure 16. Projection of leading AEC SVs from 25- and 100-member ensemble onto subspace

of leading 25 AEC SVs from 400-member ensemble, averaged over all 33 cases. (a) For the

initial-time AEC SVs. (b) For the evolved AEC SVs.
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Figure 1. (a) Classical Held and Suarez potential temperature profile; (b) Modified Held and

Suarez potential temperature profile (with more stable tropical troposphere) used here. Tem-

perature in Kelvins. Contours are not plotted above 410 K.
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Figure 2. Locations of synthetic rawinsonde profiles.
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Figure 3. Time series of errors of ensemble mean analysis from ensemble square root filter. Er-

rors are expressed in a total-energy norm integrated over the domain.
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Figure 4. Time- and zonally averaged ensemble mean absolute analysis error taken from sam-

ples between days 35 and 180. (a) Wind error, and (b) temperature error.
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Figure 5. Map of time-averaged ensemble mean error in energy norm at 500 hPa. Locations of

raobs are overplotted.
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Figure 6. Rank histograms of analysis errors. Rank histograms were generated using a sub-

sample of 25 of the 400 ensemble members. Northern Hemisphere rank histograms used

samples at every grid point between 30Æ and 65Æ N latitude and every 15Æ longitude. Trop-

ical rank histograms used samples between 15Æ N and 15Æ S latitude, and Southern Hemi-

sphere samples between 30Æ and 65Æ S latitude.
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Figure 7. Zonal average of bias of the ensemble mean analysis. Average was taken from days

35 to 180.
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Figure 8. (a) Growth rate (in total energy) over 48-h optimization period of AEC SVs as a func-

tion of singular vector number. Solid line denotes average over 33 cases, dashed lines the

minimum and maximum from the 33 cases. (b) Example of an individual case where growth

rates of AEC SV do not monotonically decrease with increasing singular vector number. (c)

As in (a), but for TE SVs.
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Figure 9. Zonal-mean profile of energy of the leading AEC SV averaged over the 33 cases. (a)

initial time, (b) 48-h evolved. Units are m2s�2. (c)-(d) As in (a)-(b), but for 48-h evolved

TE SV. Amplitudes are non-dimensional energy; here (c) is chosen to be normalized by the

maximum initial-time amplitude and (d) by the maximum final-time amplitude.
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Figure 10. Cross section of the temperature perturbation structure of the leading TE SV initial-

ized on day 32.5. Cross-section is along �42.5 o N latitude. Perturbations are normalized

by the magnitude of the largest forecast perturbation. Red perturbations are positive, blue

are negative. (a) Initial-time TE SV temperature perturbation, (b) 48-h evolved.
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Figure 11. Leading TE SV perturbations (colors) initialized on day 32.5. (a) Initial-time 700

hPa temperature (solid lines, contours every 5 K) and perturbations (normalized by the mag-

nitude of the largest evolved perturbation). (b) 48-h 700 hPa temperature and evolved per-

turbations (same normalization). (c) 48-h 300 hPa streamfunction and evolved perturbations

(normalized by the magnitude of the largest evolved streamfunction perturbation). Red per-

turbations are positive, blue are negative.
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Figure 12. Time- and latitudinally averaged power spectrum of zonal component of total energy

for the leading singular vectors. Average is over 33 cases and latitudes from 35Æ to 55Æ N

latitude. (a) Power spectrum at 300 hPa. (b) Power spectrum at 900 hPa.
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Figure 13. 300 hPa AEC SV structure for (a) initial time (here, day 32.5) and (b) 48-h evolved

(here, day 34.5). Heavy solid lines denote streamfunction of true state at that time, and col-

ored lines denote the perturbation to streamfunction from the first singular vector. Contours

of true streamfunction are every 2.�107m2s�1. Streamfunction perturbations in both panels

are normalized by the largest perturbation from the forecast, with contours at [-0.9, -0.7, : : :

, 0.7, 0.9]. Red perturbations are positive, blue perturbations negative.
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Figure 14. (a) As in Fig. 10b, but from a 100-member ensemble. (b) As in Fig. 10b, but from a

25-member ensemble.
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Figure 15. Comparison of the projection of 48-h forecast error onto subspace of leading AEC

SVs and TE SVs. Each dot denotes an individual forecast case (33 total). Squares denote

the projection onto subspace of leading 25 singular vectors, filled circles onto the leading 10

singular vectors.
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Figure 16. Projection of leading AEC SVs from 25- and 100-member ensemble onto subspace

of leading 25 AEC SVs from 400-member ensemble, averaged over all 33 cases. (a) For the

initial-time AEC SVs. (b) For the evolved AEC SVs.
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